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Abstract. If one begins with N non-interacting fermions, the Pauli principle can be easily
incorporated by the use of Slater determinants. This is not the case for N interacting
fermions. We consider here exactly soluble ‘Coulomb-type’ quantum systems in three
dimensions of N interacting identical spin-%-fermions. A systematic procedure for con-
structing Pauli antisymmetry-adapted wavefunctions is given. The resulting antisymmetric
wavefunctions are labelled by conserved ‘good’ quantum numbers. In particular, for N =2,
all the physically acceptable states are obtained. For N = 3, we present a class of antisym-
metric states which consists of all the ground states, all the first excited states and the states
obtained by the hyperradial excitations of these. For N =2 and 3, the ground states of our
model systems are found to be *S(s?) and *P(s’p), respectively, in the quantum numbers of
the interacting system.

1. Introduction

The study of exactly soluble non-trivial systems of N interacting particles is of interest
not only for purely theoretical considerations but also from the point of view of practical
applications to realistic systems. Ina previous paper (Barut and Kitagawara 1981, to be
referred to as I) we discussed a family of completely integrable, three-dimensional,
N-body quantum systems which are described by the Hamiltonian

H=3pi+pi+.. . +p3)—o/(ri+ri+..  +r)?*+ v, (1.1

where p; = —iV;, { = constantand V is a homogeneous function of degree —2. When the
system consists of N distinguishable spinless particles, and V =0, we can choose a
complete set of commuting operators which are Casimir operators of the dynamical
group O(3N +1, 2) of this problem, and of its subgroups. The problem is completely
solved by the dynamical group O(3N +1, 2) and its representations (see I).

However, for an application to a system of N identical fermions, the system must
satisfy the Pauli principle, and consequently a new set of commuting operators must be
chosen (§ 2). In this paper, we consider a system of N identical spin-3 fermions which is
described by the Hamiltonian (1.1) with V =0. After the introduction of hyper-
spherical coordinates (§ 3), we give in § 6 a systematic procedure to construct the
antisymmetry-adapted wavefunctions for any number of spin-3 fermions. The dis-
cussion is based on Kotani et al (1963) and Knirk (1974). In § 7 we apply this systematic
procedure to the case N = 2 and obtain all the antisymmetry-adapted states. In § 8, we
present a class of antisymmetry-adapted wavefunctions which includes all the ground
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118 A O Barut and Y Kitagawara

states, all the first excited states and the states obtained by the hyperradial excitations of
these. Applications to realistic problems are briefly discussed in § 9.

The Hamiltonian (1.1) is spin independent. The energy spectrum of (1.1) is still
soluble if we take in V terms depending on the spin operators, like V=0 xr/r"
(charge-dipole potential). In this paper, however, we consider for simplicity a spin-
independent Hamiltonian, and take the main effect of the spin to be the Pauli principle.

2. Statement of the problem

The energy eigenvalues of the system described by the Hamiltonian (1.1) with V =0 are
given by I,

E,=-/2n?, n=s+A+33N—-1) iA=0,1,2,.. 2.1

(¢ real for discrete spectrum, pure imaginary for continuous spectrum). Here » is the
‘principal quantum number’ of the system. In a special representation given in I, the
quantum number »n labels the representation of the O(3N +1) subgroup of the
dynamical group O(3N +1,2). The quantum number A labels that of the O(3N)
subgroup of the degeneracy group O(3N +1). It was shown that the set of Casimir
operators of the following subgroup chain (2.2) gives a complete set of commuting
operators (csco) of the system:

OBN +1,2)2 002N +1)" xO2)"

U
OGN (2.2a}
O@BN+1,2) DO(3N)’\ xO(2, 0t
U
O(z)n (2-2b)
O(3N))‘ 2 O(3N —_ 3)ANA1 % No(s)UN.mN)
U
O(BN —6)*>x N1O3)v-1mw !
Y
U
O(6)A2X 30(3)(’3vm3)
U
10(3)(11,m1) x20(3)(l2,m2)' (22C)

Here we have also indicated the quantum numbers which label these subgroups. These
are conserved ‘good’ quantum numbers for the system of N interacting distinguishable
spinless particles whose motions are described by the model Hamiltonian (1.1) with
V = 0. Thus the stationary states are completely specified by these quantum numbers
and the state vectors are denoted by

ln‘ylm>E‘na YNs YN—1s+ Y25 lNa lN—h ey ll’ Mpy, M1, .. m1>9 (23)
where the quantum numbers y ={vy,, v3, ..., ¥~} are defined as

Ajz)\j_1+[i+2‘}’/, A=An, 11§A1, ]-:2, 3,.4..1\7. (2.4}
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As we will show in § 9, state vectors |nylm), or linear combinations of these state
vectors, 2, 1m Cyim|/nylm), can be used as zeroth-order state vectors for a new
perturbation theory for more realistic N-body problems.

For an application of this model to the system of N identical spin-; fermions, the
strong restrictions imposed by the Pauli principle have to be taken into account. In this
case, for Pauli antisymmetry-adapted states, the quantum numbers y=
{v2, Y3, .. ., wwh [ ={li, I, ..., In} and m ={m,, m3,..., mn} are no longer good.
However, as we shall see in § 6, the quantum numbers » and A still remain good. We
shall also see that not all of the solutions of the Schrdodinger equation with Hamiltonian
(1.1) are allowed by the Pauli principle. In particular, from equation (2.1), the
minimum value of E,, is obtained when s = A = 0, but the states obtained in this way are
not in general the antisymmetry-adapted states.

It is important to know the physically acceptable states and their conserved ‘good’
quantum numbers for a system of N identical spin-3 fermions. These states are the ones
which should be used as zeroth-order states for a perturbation theory to realistic
problems.

3. Description of the Hamiltonian by hyperspherical coordinates

In this section, we rewrite our model Hamiltonian (1.1) in terms of hyperspherical
coordinates. We will see that this is the natural coordinate system to describe the state
vectors (2.3) in coordinate representation.

In hyperspherical coordinates, we replace the 3N independent coordinates
{xoy»2z:]i=1,2,...,N} by a sct of (3N —1) hyperspherical angles and a hyper-
spherical radius. Among the (3N — 1) hyperspherical angles, we can choose 2N angles
to be the ordinary three-dimensional spherical polar angles {6, ¢;|i=1,2,..., N} of
individual particles. By means of the ordinary spherical polar radii {r;|i =1, 2,..., N},
the remaining (N —1) hyperspherical angles are defined by the following set of
equations:

N =T COS NN,
rN—1=r Sin My COS Mn-—1,

I'N-2 = r sin NN sin MN-1COS N-2,

= r sin 7N Sin Mn_1 Sin v—2 . . . SiN 73 COS 73,

ry=rsin nn sin x-1 sin Mn—2 . . . sin 73 sin ;. 3.1
The angles 7; can also be expressed as

sin® n; = Rj-1/R7, (3.2)

where

k
R:;=Y r (3.3)

i=1

The hyperspherical radius r is defined by

N
F=Ry=1 7 (3.4)
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The volume element in the 3N-dimensional space described by the hyperspherical
coordinates is

dr=r""1drdQ, (3.5)
where
N » 4 N
dQ =[] (cos® n; sin® ™ n; dn;) [] (sin 6; d6; de;). 3.6)
j=2 i=1

Using these coordinates, the Hamiltonian (2.1) with V =0 is written as

16 3N-115 AN ¢

HZ_E?_ 2 rar 27 ¢ 3-7)
where A*(Q) is defined by
AHQ)= AR,
A]2:‘_é_(3j—4)'cosz n; —2 sin’ "’i+—f\—’ill~+ Lj ’
an; sin n; COS 7; dn; sIn"mn; Ccos” 1
Al=Li (3.8)

In the above equations, Lf is the square of the ordinary angular momentum operator
for particle j:

.2

1 4 8 1 &
L} =-~ ——(' 9-—>~———-—. :
1T sing, 36, \"" Y56,) Tsin® 6, ag 3.9)

~ The operators A2 A,; and L,? are, in fact, Casimir invariants of O(3N), O(3/) and
"O(3) in the subgroup chain (2.2). Therefore, in order to represent the state vectors
|nylm) in spactial coordinates, the hyperspherical coordinate system is the most natural
one.

4. The Schrodinger wavefunction

We can separate the Schrodinger equation, (H — E)¢ = 0, into a hyperangular part and
a hyperradial part:

ATQ)S(Q) =eS(Q), 4.1
2 1
(adr—z— [e +33N -1)(N-1)] r—2+2—f+ 2E>r(3N'1)/2@(‘r) =0, 4.2)

where ¢ is the separation constant and
W(r)=R(r) S(Q). (4.3)

The hyperangular part (4.1) is well known from the general theory of harmonic
polynomials (Erdely et al 1953, Grynberg and Koba 1964). There are two methods by
which the eigenfunctions $(}) can be obtained. One is the direct solution of the
differential equation in hyperspherical coordinates. The other method involves the
construction of the linearly independent homogeneous polynomial solutions of
Laplace’s equation in 3N dimensions. Both methods have their own advantages and
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disadvantages. The former gives state vectors which are exactly eigenvectors of csco
given by the set of Casimir invariants of the subgroup chain shown in (2.2). By this
method, it is straightforward to write a wavefunction for any value of N. On the other
hand, it is not easy to see the transformation properties of the wavefunctions under the
operations of particle exchanges. It is necessary to know these properties in the
construction of the antisymmetry-adapted wavefunctions. The other method,
however, provides a convenient form of the wavefunction appropriate for the study of
its transformation property. The former method is discussed in § 4.1, the latter in § 4.2.
For §§ 4.1 and 4.2, we will closely follow the discussion by Knirk (1974). The treatment
of the hyperradial part (4.2) is straightforward and the function Z(r) is explicitly given
in §4.3.

4.1. The direct solution of the hyperangular equation

Since the operator A%(Q)) is defined recursively by equation (3.8), the hyperangular part
can be solved by analysing the eigenvalue problems of operators A,?(Qi),

A}Q)S(Q) = £S,(Q,). (4.4)
Here (); implies the collection of variables Q;={n2, n3, . . ., n;; 61, 62, . . ., 6;;
©1, ¥2, - - ., @;}. It is well known that the eigenvalue ¢, can be written in the form

8i=)‘i(’\i+3j_2)’ Aj=0, 1,2,..., (45)

Because of the recursive form (3.8) of the operator A,?(Q,-), equation (4.4) separates into
variables 7, );_;, 6; and ¢; by setting

Si(Q) = GAjo1, by %1 1)8;-1(Q-) YU, m; | ). (4.6)
Here
f=1-2sin’ 7, w; ={6; ¢;}, 4.7)

Y (I, m;|w;) is the usual three-dimensional spherical harmonic Y, (6;, ¢;) and v, is a
quantum number associated with the eigenvalue ¢;. The function G in equation (4.6) is
the solution of the ordinary differential equation

d2

4(1- d -

—[61t +(6] — 12)]—

2X 1M1 +35-5) 24 +1
+(s,~-— i1 #37=5) 240, ))G=O. (4.8)
1-¢ 1+
The physically acceptable function G is
G(Aj-—l,lj, v ‘ tl) = (1 + tj)lj/z(l _tj):\(i_l)/zpfy);'i_l+3]‘/2—5/2,1j+1/2) (t,), (4.9)

where P> (¢) is the Jacobi polynomial of order y. The eigenvalue ¢; is given by the
form in equation (4.5) with

A,‘=/\i_1+lj+2‘)’i, ‘Yj=0, 1, 2,..., (410)
In equations (4.6) and (4.10), we have the identifications

S1() = Y (I, mi|wy), Ar=11. (4.11)
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As we have shown in equations (2.4) and (2.5), we label our state with {y;} rather than
{A;}. Tt is now clear that the hyperangular wavefunction can be written as

S(y, L m|Q)=H(y, l|nA(l, m|w), (4.12)
where
H(y, I}m)=GAn-1, Iny yn|1-2 sin” nn)G(An-2, In-1, Yn-1]1-2 sin® Ma_1) ..
X G(’\2’ 13’ 73‘ 1-2 Sinz n3)G(ll9 12’ 72' 1-2 Sin2 le) (413)
and
N
A, mlw)=T] Y, m;|w). (4.14)
i=1
In equation (4.12), n ={n,;} and @ ={w;}. The function S is the simultaneous eigen-
function of the operators A°=AX, Ax_1, Ax-2, ..., A}, AJand LY, LAy, ..., L3, L3;
(L)~ (Ly)N=1s - .- » (L2)2, (L. )1. These operators are in fact Casimir operators of the

chain O(3N), O(3N =3), OBN —6), ..., 0(9), O6) and YO3), ¥ '0@3), ..., *0(3),
'O(3) which appear in the subgroup chain (2.2). The function S further satisfies

A )S(y, [, m Q) =A (A +3N =2)8(v, |, m| V), (4.15a)
AHQ)S(y, L m [ Q)= XA +3]=2)S(y, [, m| ), (4.15h)
L (w)S(y, [, m|Q) =L{L+1)S(y, [, m|Q), (4.15¢)

In equation (4.15qa),

N N

A=E+2B, =3 1 B=Y v. (4.16)
i=1 i=2

4.2. The homogeneous polynomial solutions of Laplace’s equation in 3N dimensions

It is possible to construct another equivalent set of solutions to equation (4.1) by
considering Laplace’s equation in 3N dimensions. Let us define a function U(r) by

U(r)=r"$,(Q). (4.17)
Operating the 3N -dimensional Laplacian on U(r), we obtain

(ﬁ Vi) U= (§§+3N 1 L‘__Azrgm)m @

r ar
=" A +3N =2) = A5 (). (4.18)
Hence the relation
A2 DS () =A (A +3N =2)8, () (4.19)

is the necessary and sufficient condition for U (r) to be a solution of the 3N -dimensional
Laplace equation

N
(Z v%) U(r)=0. (4.20)
i=1
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From the previous discussion in § 4.1 and equation (4.19), it is obvious that the function
S, (Q}) is, in general, expressed by an arbitrary linear combination of the functions
S(y,I, m|Q) as

SA(Q)= 2 Z Z C(AZ,"-9)\N-—1;113---:lN;mla'-',mN)S(‘Ya l’mlﬂ)'

A2 A% b AN =1 UreenndN M1y, MN

4.21)

We now try to find the homogeneous polynomial solutions of the Laplace equation
(4.20). Once they are obtained, the functions S, ({}) are determined by (4.18).
We first separate the harmonic polynomial U in ordinary spherical polar angles:

Ury=Q(B,!r,...,m)Al m|w) (4.22)

where Q(8, I|r1, . .., rn) is ahomogeneous polynomial of degree A inry, 73, . . ., rn, and
A(l, m|w) is defined in equation (4.14). Itis shown that the hyperharmonic polynomial
Q takes the form

O(B,llrla- . ’rN)=Z Ca(B; I)ﬂa(B,”rl,- .. ,rN) (4-23)

where

baBollr, .. ) =pt2opl 2 | 2o (4.24)

Here a denotes a set of N non-negative integers a ={a1, a2, ..., an}. Since A is the
degree of homogeneity of the polynomial Q, from equations (4.24) and (4.16), it is
evident that

N N
B=Y %=1 (4.25)

Substituting equation (4.23) into equation (4.20), we obtain an equation which deter-
mines the set of coefficients C, (B, ),

Ja(B’”rh---,rN)_
5 =

i

Y. C.(8,1) f a;(2a; +21;,+1) 0. (4.26)
a i=1

Equating all the coefficients of linearly independent terms in equation (4.26) to zero, we
can evaluate C,. Generally equation (4.26) gives more than one possible set of
coefficients C,. The corresponding linearly independent polynomials Q can be labelled
as

Q(B’I;ilrla'--er) (4.27)
where
. _ (B +N—2)
i=1,2,...,ng n,;-( N—2 )
We can now write a set of hyperspherical functions as
SB,Lm;ilQ)=rQB, l;i|r,..., AU, mloy,...,oN). (4.28)

As indicated in equation (4.21), the function S(B8, [, m; i|Q) is an eigenfunction of the
operator AZ, but it is not an eigenfunction of operators AZ,j=1,2,..., N—1. Since Q
is a polynomial in the variables r, 7, . . ., rv which are ordinary spherical polar radii of
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individual particles, it allows us immediately to see the transformation properties of the
wavefunction under the exchange of particles. Furthermore, using equation (3.1), we
can express Q in terms of the hyperspherical coordinates.

4.3. The hyperradial solution

The hyperradial equation (4.2) can be solved in the usual manner (I) and the result is

E,=-{"/2n?, n=s+A+33N-1), s=0,1,2,..., (4.29)
R(n, A7) =Nyre ®?p* F(=n+A +33N ~1),2A +3N —1; p), (4.30)
p=2{/n)r.

In the above equation, F(a, A; p) is the confluent hypergeometric function and N, is
the normalisation constant. The normalisation of the wavefunction (r)=
R(n, A |r)S, () is

xX

J‘ drr3N—1 j dQ l,//*(")d/(r) — 1’ (4.31)
0

where d{} is given in equation (3.6). From this normalisation, N, , is calculated to be

142

T2 [n+A+3N-1)]!
Ny _[<;§> (2’1)[”_A_%(3N“1)]![(2A+3N—2)!]2} . (4.32)

5. The total angular momentum representation

The addition of the angular momentum operators of individual particles defines the
total angular momentum operator L:

L:L1+L2‘+...+LN. (51)

Since the operators L? and L, commute with the Hamiltonian, our state function can be
constructed as an eigenfunction of these. This representation is necessary when we
consider perturbation problems to realistic systems. We couple the angular momenta
of individual particles as

B, ..., IN;LZ,---,LN—l;L,MLIw)

= Y (Ln-t,Mn_i,lnymn|Lnoy, Ing L, M)

My -1,my

X Y (Lnv-2, Mn—2, In—1, M1 | L2, In-1y Loy, Mo )%

My _20mn 1

X Mz:m (Lay Ms, I3, m3| Ly, I3, L3, M3) mzm (lh, my, Ir, maily, by Loy, M)
><A([1>,...,IN;ml,...,lew). (5.2)

where (L;_1, M;_1, [, m;|L;_1, [, L, M) are Clebsch-Gordan coefficients. In this way

we can realise the total angular momentum L by various possible ways indicated by the
different sets of intermediate angular momenta {L,, L, ..., Ly -}. For simplicity of
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notation, we shall denote a set {L,,..., Ly} by a single index k. We denote the
number of possible sets of intermediate angular momenta k by n. (/).

The hyperangular functions in the total angular momentum representation are now
written as

SEMy, L k| Q) =H (v, l|m)B(; k; L, My |w) (5.3a)
or

SEMLB Lk, i | =rQB, I;ilr, ..., m)BUs k; LML |w).  (5.3b)

6. Construction of the Pauli antisymmetry-adapted wavefunctions

For a system of N identical fermions, the total wavefunction is restricted by the Pauli
principle. If one starts from an independent particle model for an N -fermion system as
orre does customarily, the Pauli principle can easily be taken into account using the
Slater determinants. However, it is not an easy problem for our model system, since the
motions of particles are strongly coupled to one another, Here we can make use of the
Kotani-Yamanouchi formalism (Kotani et al 1963) which provides a systematic
method of constructing the antisymmetry-adapted wavefunctions for a system of N
identical spin-% fermions. We will now discuss this formalism.

-In the space of spin functions for a system of N spin-3 fermions, we have 2" linearly
independent spin functions,

61(01)6x(02) . . . On(oN), 6.1)
where each of 84, 8., ..., 65 can be either a or 8 such that
s20(0) =3G+1)6(a), (s:).a (o) =3a(oy), (5:):8(0) = —3B().

The monomial functions (6.1) are eigenfunctions of the total spin operator &, with the
eigenvalue M,. They are not, however, eigenfunctions of 2, where

F=51+85+...+8n

In order to construct eigenstates of & 2, the monomial functions (6.1) can be coupled
according to a genealogical scheme. The vector coupling formulae according to this
scheme are written as follows:

.M,
035,.%,.... Sn-2.5+1/2{01, . . ., ON)

S —Ms +1 1/2 . _
- () Pogma iy, ox-atow
S+M,+1\"? S+1/2,M,+1/2
(—_éS'f'—Z_) ®S1.sz.-:-.§N—2 ((Tl’ seey UN—l)B(UN), (620)

SM,
05, $....5n-2.5-1/2(01, . . . s ON)

S+MNY? o _
=( 2S ) 621,.%43:%,.;_11{2(0'1,---’UN~1)a(0'N)

S—M; 12 §-1/2 1/2
+( - ) OTIAM 26 an )Blow), (6.25)
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where S, is always 3; S, can be either 1 or 0 etc. For simplicity of notation, we denote a
set {S1, S,, ..., Sn—1} by a single index k. The functions @™ form a complete set of
functions in spin space of N spin-3-fermions. Therefore, the total wavefunction with
specified L, M;, § and M; can be expanded as

f($)
VMM, ) = F M (10 M), (6.3)

where f(S) is the number of different sets « which give the same total spin S. For the rest
of this section, we will omit the indices L, M, S and M; to simplify the notation.
The functions 0, with specified S and M, provide a basis set for an f(S)-dimensional
irreducible representation of the symmetric group Sx. Let the permutation of particle
coordinates, both space and spin, be denoted by P. Then
£(S)
P®K = z ®K'V:<',K(P)- (6-4)

x'=1
The Pauli principle then requires that
PV =¢gp¥, (6.5)

where ep is +1 or —1 according to P even or odd. Combining equations (6.3), (6.4) and
(6.5), we find the transformation properties of the spatial functions ,:

f(s)
Ph= Y eUcn(P), (6.6)

where
UP)=epVI(P .

VT is the transpose matrix of V. The set of matrices {U(P)} also gives an irreducible
representation of the symmetric group Sn.

In order to construct the antisymmetric wavefunctions, we must thus find the
Schrodinger wavefunctions satisfying equation (6.6). The hyperradial function is
invariant under operations P; thus we want to find the hyperangular functions which
have the special transformation properties shown in equation (6.6). The totality of
hyperangular functions supplies a basis for an infinite-dimensional matrix represen-
tation of Sy. At this point, it is convenient to classify the hyperangular functions by four
invariant labels. They are L, M;, r and 8. L and M, are invariant under the
permutations because

[P, L*]=[P,L,]=0. 6.7)
The symbol r represents the ‘I structure’ of the function. It is defined by
r={(%) (") (). . .} (Ra+np+n.+...=N) (6.8)

where n, is the number of /; with [; =%, n, is the number of /; with /; = 1°, and so on. For
a given 7, there are

n.=NV/nzlny'tn.! ... (6.9)

distinct sets of /; ordering [/; ordering [/1, /2, ..., Iv]. We will index each set with a
single integer j. The quantum number B is defined by equation (4.16):

B=3A—-&=4A ~ (" +npl” +nd+. . )] (6.10)
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Since [P, A*] =0, A is invariant. From the invariance of A and 7, it is evident that B is
also an invariant. As shown in equation (4.27), for a given 8 and fixed L, M, and 7,

there are
+N -2
ns=(" %) 6.11)

linearly independent functions. We will index each one with a single integer i. Hence,
the convenient labelling of the hyperangular function is given by

SEMe(B, T|QY), w={i, j, k}. (6.12)

In a subspace specified by L, M;, 8 and 7, the subset of functions S5 (8, 7|Q0)
supplies a finite-dimensional reducible representation of Sy :
g(L.B,7)
PS, = 21 S X ru(P). (6.13)

uw'=

In the above expression and in the rest of this section, we omit the indices L, My, 8 and
7. The dimensionality of this representation is denoted by g(L, 8, ) and it can be
calculated to be

g(L, B, 7)=n.(r)ngn.. (6.14)

If the representation {X(P)} contains the irreducible representation {U(P)}, it is
possible to take linear combinations of the functions S, to construct new functions &,
which provide a basis set for {U(P)}:

P% =3 FUc(P), (6.15)
where

&=L 8.Cun (6.16)
n

Using this %,, the spatial function #, in equation (6.3) is written as
he(P) =R (n, A |NF(Q). (6.17)
Combining equations (6.15), (6.16) and (6.13), we obtain a set of equations for C,,,:

Z X#'M(P)Cu,x =Z Cy.',K'UK',x(P)s (6180)
" ®

or, in matrix notation,
X(P)C =CU(P). (6.18b)

Solving equation (6.18) for C, we can obtain &%,.. However, in practice, it is more
convenient to make use of projection operators to determine ¥,. Equation (6.16)
means that a basis function of an irreducible representation {U(P)} designated by the
total spin § is constructed by a linear combination of the independent functions S,, :

FO=Ys.Cc¥. (6.16"
o

Here the designation of the irreducible representation is made by the superscript (S).
Equation (6.16') conversely tells us that an S, is expressed as a linear combination of
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the functions &5

Su = Z 2 ‘99£<S)a(5),x;w (619)

(§) «

There is a projection operator 2 which picks up a particular ¥’ component from a
function S, :

s =PLS,. (6.20)

Such an operator 2% is given by (see e.g. Hamermesh 1962)
S
P> = f( ) N L Ul (P)P. (6.21)

For a givensetof {L, B3, 7}, there are g(L, B, 7) linearly independent functions Su. If the
representation {X (P)} contains the irreducible representation {U'®(P)}, # S)S are
non-zero at least for one of S,,. The function #%° is proportional to 9‘”(3)5 and C'®). can
be written as

S
CfL _b(s>f( )Z US (P)X,. .+(P), (6.22)

where bif) is the proportionality constant. The u* is a set of quantum numbers i, j, k for
which 2’S,,+ is non-zero. The correct set of the proportionality constants 5%’ can be
easily determined by substituting equation (6.22) into equation (6.18). Therefore,
knowing the transformation properties of S, in the form of equation (6.13), the use of
equations (6.22) and (6.18) determines #5 . Using these #® the correct antisym-
metry-adapted wavefunctions are constructed by equations (6.3) and (6.17).

7. Antisymmetry-adapted wavefunctions for N =2

In this section, we use the hyperangular functions of the form given in equation (5.3a):
SEMe(y, Q) =H(y, | n)B(; L, My |w), (7.1)
where
1=[1%17, Hy, lin)=G(% 1", y|1-2sin’ n). (7.2)
We now consider the function Sﬁ‘ML (B, 7|Q)). For N =2, it is evident that n, = 1 and
ne(r)=1. When the [-structure is given by 7= {(I"?), n.=1. However, for 7=
{(I)'(1*)"} with [° # I”, n, =2. Hence we have two different cases. The former gives a

one-dimensional representation of the symmetric group S,, and the latter gives a
two-dimensional reducible representation:

gL, B, r={U"Vh=1, gL, B, 7={UH' "' =2. (7.3)

We denote the permutation operators by

1 2 12
= = . 7.4)
I (1 2)’ P2y (2 1) 74

Under the P,; operation, H and B transform as
PyuB(% I°T L My w1, w2) = (=) """ B 14T L My w1, w2 (7.5)
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and
PuH (@, [1% 1P)lm) = ()" H, [, 1°]]m). (7.6)
Therefore equation (6.13) can be written as
IS“Me(y, [1% 1°1|1Q@) = 85 Me(y, [1%, 1°1| Q)
PaiS™Me(y, [1% 1P| = (5) TS My, 11, 141 ), @.7)
For 7 = {(I*)%}, equations (6.22) and (7.7) give
C® = CfSUOI) x 1+ U (P2)(-1)"]
=3O X1+ (=) (-1)"]
=SS+ (=11 (7.8)
From equations (6.16') and (7.8), with proper normalisation, we obtain
PEMENB =y, 7 = {1} Q) =1+ (=) Me(y, [17, 11| Q). (7.9)
For 7 ={(I*)}(I*)"} with [ # [°, CLS) are written as
CiR ey =B CFSIUOI) x 1+ U (Par) x 0]= @b (),
Ciey =3 CFSIUC D) X0+ U (Pa) x (=177
=3 OF(S) (-1 TS, (7.10)
After the proper normalisation, equations (6.16") and (7.10) give
FEB =y, 1 ={U' )} Q)
= (1N My, I, 17| Q) + ()0 SS My, [, 10| Q). (7.10)

Both equations (7.8) and (7.10) satisfy equation (6.18) and our results are correct. In
fact, equations (7.9) and (7.11) are exactly the same as the expression given in Macek
(1967). The total antisymmetry-adapted wavefunctions are now given by

YEMUSM, (B rlr @)= R(n, A | NFEMES B, | D)OSM (o). (7.12)

From equations (2.2), (4.16) and (7.9), the ground state of our model system is
identified as

\I;L=°»ML=0"S=0,M5=0(” =%, B - 0’ .= {SZ}II‘, 0).

8. Antisymmetry-adapted wavefunctions for N=3

For N =3, if we use the functions (5.3a), it is rather tedious to investigate their
transformation properties under the operations of permutations. But using functions in
the form in equation (5.3b), we can easily see their transformation properties, and the
construction of the antisymmetric wavefunctions is straightforward. However, it is
difficult to obtain a closed expression which can describe all the possible antisymmetric
states. We therefore present a class of antisymmetric wavefunctions which consists of
all the ground states, all the first excited states and the states obtained by the hyperradial
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excitations of these. The construction procedure given in § 6 will be followed. The
results are given below.
W(L=1,M.;S=3M:npB=0r={sp}ro)
= const R(n, A = 1|r){—3[sin n3 cos 7. Y(1, My |w>)
—sinn3sin 72 Y (1, My |w)]O(s =3, M;; S = 1] o)
+[2cos n3Y (1, M |w3) —sin n3 cos n2 Y (1, My |w,)
—sin n3sin 72 Y(1, My |w1)]0(s =3, M,; S, =0} o)}, (8.1)
where n =5,6,7,8,...,
W(IL=0,M.=0;S=5M,:nB=1,7={’}ro)
= constant R (n, A =2|r)[~vV3sin® n3(1-2sin® 1)O(S =5, M,; S =1 0)
+(2=3sin’ 73)0(S =1, M;; S, = 0| )], (8.2)
where n =6, 7,8, ...,
WIL=1,M;85=3M,:nB=07={sp’}r o)
= constant & (n, A = 2|r){sin 113 cos 2 cos 13 ¥(1, 1; 1, My | w3, w3)
—~sin 93 sin ny cos N3 (1, 1; 1, My | w1, w3)
+sin’ 3 sin 2 cos M¥(1, 15 1, My | w1, w2)]0(S =3, M, | o), (8.3)
where n =6,7,8, ...,
W(L=00r2,M;S=5M:nB=0,r={sp’}r, o)
= constant R (n, A = 2| r){~/3[sin 13 cos 1, cos ;¥
x(1,1; L=0o0r2, M |w,, ws)—sin 73 sin 13 cos ;¥
x(1,1;L=00r2, M |w1, 03)]0(S =%, M,; S.=1]0)
~[sin ma cos 72 cos 73 ¥ (1, 1; L =00r 2, M; | w1, w3)
+sin nasin pacos 3% (1, 1; L =00r2, M. |wy, w3)
—2sin’ n3sin npcos M2 ¥(1, 1; L=00r 2, My | w1, w3)]
x0(S =%, M,; S, =0|0)} (8.4)
where n=6,7,8,...,
W(L=1,M;S=5%Ms:nB=0,7={sp’}r, o)
= constant R (n, A =2|r){{sin 01 cos nacos 3 ¥ (1, 1; L =1, M | w2, w3)
—sin n3 sin N2 cos 3% (1, 1; L =1, My | w1, w3)
—2sin’® n3sin 73 cos M2¥(1, 1; L =1, My | w1, w2)]
xO(S=3M;S,=1|0)
++/3[sin n3 cos nz cos 73 ¥ (1, 1; L =1, My |wa, w3)
+sin n3sin g2 cos 31, 1; L =1, M | w1, w3)]
xO(S =3, M,; S, =0|0o)}, (8.5)
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where n=6,7,8, ...,
WL =2,M;S=3,M,:nB=0,1={s’d}\r, o)
= constant X R (n, A = 2| r){—3[sin? n3 cos®> 72 Y (2, My | w»)
—sin” n3 sin” 7, Y(2, M| 01)]1O(S =3, M;; S: = 1| o)
x[2 cos® 73 Y (2, My | w3) —sin® 3 cos® 72, Y (2, My | w2)
—sin® n3sin® 72 Y(2, ML | 01)]0(S =3, M,; S, =0|o)}. (8.6)

where n=6,7,8,....
In equations (8.1)~(8.6), @(S, M,: S»| ) are the spin functions which satisfy

P08, M,; S,|0) =S(S+1)0(S, M,; S> | o), (8.7)

L.0(85,M,; S,|0)=S.0(S, M,; S, | o), (8.8)

LIS, M,; S| ) =S:(S,+ 1)O(S, M,; S: | ), (8.9)
where

Ly =5,+s5,, L =P, +5;. (8.10)

and s; are one-particle spin operators. Explicit expressions of @ are given in equation
(6.2). The functions ¥ are defined as

Y(ly, Ip; L, ML|w1, w2)
=Y Y(h, mi|e) Yz, M —mi| @)y, my, b, My —my |1, 1, L, My).

(8.11)

We list all the possible antisymmetry-adapted ground and first excited states in
table 1.

Table 1.
n § A B ¢ 7 L § Term Equation
4 0 0 o o § 0) No antisymmetry adapted state is allowed
5 0 1 1 Szp i ; 2p (8.1) Ground states
6 0 2 1 o 8 0 i 3 (82 1st excited states
6 0 2 0 2 8 1 2 ‘P (83
6 0 2 0 2 0 3 % (84)
6 0 2 0 2 1 i % @39
6 0 2 0 2 2 1 D (84
6 0 2 0 2 S4d 2 2 D 86
6 1 1 0 1 84 1 1 P @1

9. Applications and concluding remarks

As we mentioned in § 1, our exactly soluble model systems provide a new starting point
for a perturbation theory to realistic systems. This idea was considered by White and
Stillinger (1970) for the ground state of two-electron atoms (N =2). They took the
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exactly soluble model system described by the Hamiltonian (1.1) as the unperturbed
starting point. The parameter { in the unperturbed Hamiltonian (1.1) was obtained by
averaging the actual electron-electron and electron-nucleus potentials over all the
3N -1 =5 hyperspherical angles in the configuration space. In spite of the crudeness of
the zeroth-order model, they obtained a reasonable value for the energy expectation
value by the second-order correction. There is another method to determine the value
of the parameter { for the zeroth-order model.
For a system defined by

H=3pi+...+pa)+Ulr, ..., r), (9.1)
we separate the Hamiltonian into two parts:

H=Ho{)+H'((), (9.2)
where

Ho()=3(pi+...+pn) =&/ ri+.. . +ry)'” (9.3)
and

H'(Q)=Ulr,...,r)=[=g/ri+. .. +r"), 9.4)

The eigenvalue problem
(H-E)¥=0 (9.5)
is approached by perturbation expansions of the eigenfunctions and eigenvalues:
V() =)+ &Yl +. . .,
E(0)=Eo({)+EE1()+EEAD +. . .. (9.6)

An appropriate value of { can be determined by the variational requirement

8 [(ROIH|D)) .

— | =1 =0, 9.7

az[ @00 ] o7
where

D) = o) + £ (). (9.8)

The ¢ 'd/,-(._{ ) is the lowest-order correction to the ().

In any case, it is essential to know the physically acceptable zeroth-order states
which satisfy the Pauli principle. The zeroth-order states cannot always give good
approximations to realistic systems; however, this kind of approach has certain advan-
tages. The zeroth-order states here correspond (contrary to the usual practice) to
strongly coupled particle states. The global quantum numbers of the model system can
provide a useful classification of the states of a quantum system with strong particle
correlations. In fact the study of two-electron atoms based on the idea of Fano (1976),
Macek (1968) and Lin (1974) (Klar and Klar 1980; for three-electron systems, see
Clark and Greene (1980)) showed that the quantum numbers related to the model
system are very useful for the classification of the doubly excited states of He. Our
model system may also give some useful insight into the periodicity of atoms (periodic
table). With the independent particle model, one cannot explain the Aufbau principle
whose characteristic is due to a symmetry breaking by particle interactions. It is
interesting to study the Aufbau scheme from another end, starting from an exactly



N-body quantum systems in 3D: IT 133

soluble interacting model like the one shown in this paper. This problem is now under
investigation.

In summary, we have discussed a class of exactly soluble quantum systems of N
interacting identical spin-3-fermions. The classification of the state vectors is based on
the dynamical group O(3N +1,2) and its subgroups. The Casimir operators of the
subgroups are expressed in terms of hyperspherical coordinates, and the group
theoretical interpretation of the corresponding quantum numbers is exhibited. We
have presented a systematic procedure of constructing the Pauli antisymmetry-adapted
wavefunctions. This procedure works in principle for the system of any number of
spin-3-fermions. The resulting antisymmetric states ar< labelled by conserved good
quantum numbers. For N =2 and 3, these antisymmetric wavefunctions are explicitly
constructed. For N =2, the ground state of our model system is designated by 'S(s%)
(analogous to the ground state of atomic helium or deuteron, in the nuclear physics
context). For N =3, however, the ground state of our model system is labelled by
2P(szp). The ground state of atomic lithium is 2S(s*). For our model system, the state
25(s%) appears in its first excited level (n = 6). No state with n = 4 is allowed by the Pauli
exclusion principle. Note however, that the quantum numbers in the model and in
atomic physics notation do not have exactly the same meaning, but one can establish a
correspondence.

References

Barut A O and Kitagawara Y 1981 J. Phys. A: Math. Gen. 14 2581

Clark C W and Greene C H 1980 Phys. Rev. A 21 1786

Erdelyi A, Magnus W, Oberhettinger W and Tricomi F G 1953 Higher Transcendental Functions vol 2 (New
York: McGraw-Hill) ch XI

Fano U 1976 Phys. Today 29 32

Grynberg M and Koba Z 1964 Ann. Phys., NY 26 418

Hamermesh M 1962 Group Theory (New York: Addison-Wesley) p 113

Kiar H and Klar M 1980 J. Phys. B: At. Mol. Phys. 13 1057

Knirk D L 1974 J. Chem. Phys. 60 66

Kotani M, Amemiya A, Ishiguro E and Kimura T 1963 Tables of Molecular Integrals (Tokyo: Maruzen) ch I

Lin CD 1974 Phys. Rev. A 10 1986

Macek J H 1967 Phys. Rev. 160 170

—— 1968 J. Phys. B: At. Mol. Phys. 1 831

White R J and Stillinger F H 1970 J. Chem. Phys. 52 5800



