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J. Phys. A: Math. Gen. 15 (1982) 117-133. Printed in Great Britain 

Completely integrable N-body quantum systems in three 
dimensions: 11. N identical spin4 fermions 

A 0 Barutt and Yutaka Kitagawaraf 
+ Department of Physics, University of Colorado, Boulder, CO 80309, USA 
$ Department of Chemistry, University of Colorado, Boulder, CO 80309, USA 

Received 27 May 1981 

Abstract. If one begins with N non-interacting fermions, the Pauli principle can be easily 
incorporated by the use of Slater determinants. This is not the case for N interacting 
fermions. We consider here exactly soluble ‘Coulomb-type’ quantum systems in three 
dimensions of N interacting identical spin-&fermions. A systematic procedure for con- 
structing Pauli antisymmetry-adapted wavefunctions is given. The resulting antisymmetric 
wavefunctions are labelled by conserved ‘good’ quantum numbers. In particular, for N = 2, 
all the physically acceptable states are obtained. For N = 3, we present a class of antisym- 
metric states which consists of all the ground states, all the first excited states and the states 
obtained by the hyperradial excitations of these. For N = 2 and 3, the ground states of our 
model systems are found to be ‘S(s2) and ’P(s2p), respectively, in the quantum numbers of 
the interacting system. 

1. Introduction 

The study of exactly soluble non-trivial systems of N interacting particles is of interest 
not only for purely theoretical considerations but also from the point of view of practical 
applications to realistic systems. In a previous paper (Barut and Kitagawara 1981, to be 
referred to as I) we discussed a family of completely integrable, three-dimensional, 
N-body quantum systems which are described by the Hamiltonian 

(1.1) 
where pi = -iV, 5 = constant and V is a homogeneous function of degree -2. When the 
system consists of N distinguishable spinless particles, and V = 0, we can choose a 
complete set of commuting operators which are Casimir operators of the dynamical 
group O(3N + 1,2) of this problem, and of its subgroups. The problem is completely 
solved by the dynamical group O(3N + 1,2) and its representations (see I). 

However, for an application to a system of N identical fermions, the system must 
satisfy the Pauli principle, and consequently a new set of commuting operators must be 
chosen (§ 2). In this paper, we consider a system of N identical spin-; fermions which is 
described by the Hamiltonian (1.1) with V = 0. After the introduction of hyper- 
spherical coordinates (§ 3), we give in § 6 a systematic procedure to construct the 
antisymmetry-adapted wavefunctions for any number of spin-; fermions. The dis- 
cussion is based on Kotani et a1 (1963) and Knirk (1974). In § 7 we apply this systematic 
procedure to the case N = 2 and obtain all the antisymmetry-adapted states. In § 8, we 
present a class of antisymmetry-adapted wavefunctions which includes all the ground 

H = ; ( p : + p : + .  . . + p $ ) - g ( r : + r ; + .  . .+r&)”*+V,  
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118 A 0 Barut and Y Kitagawara 

states, all the first excited states and the states obtained by the hyperradial excitations of 
these. Applications to realistic problems are briefly discussed in 9 9. 

The Hamiltonian (1.1) is spin independent. The energy spectrum of (1.1) is still 
soluble if we take in V terms depending on the spin operators, like V = a x r / r z  
(charge-dipole potential). In this paper, however, we consider for simplicity a spin- 
independent Hamiltonian, and take the main effect of the spin to be the Pauli principle. 

2. Statement of the problem 

The energy eigenvalues of the system described by the Hamiltonian (1.1) with V = 0 are 
given by I, 

E,, = - f2 /2n2 ,  = s + A  +$(3N-  1) (s,A = 0 ,  1 , 2 , .  . . )  (2.1 I 

( 5  real for discrete spectrum, pure imaginary for continuous spectrum). Here n is the 
‘principal quantum number’ of the system. In a special representation given in I, the 
quantum number n labels the representation of the 0 ( 3 N + 1 )  subgroup of the 
dynamical group O(3N + 1,2). The quantum number A labels that of the O ( 3 N )  
subgroup of the degeneracy group O(3N + 1). It was shown that the set of Casimir 
operators of the following subgroup chain (2.2) gives a complete set of commuting 
operators (csco) of the system: 

O(3N + 1 , 2 )  = O(2N + 1)“ x O(2)” 
U 
O ( ~ N ) A  

O(3N + 1,2)  2 0(3NIA x O(2, 1)* 
U 
OG),, 

0 ( 3 N ) A  2 O(3N - 3)AN-’ x N0(3)‘1N*mN’ 
U 
0 ( 3 ~ - 6 ) ~ ~ - 2  X N - ~ O ( ~ ) ( L I , ~ W  I )  

U 

(2.2a i 

(2.2b) 

Here we have also indicated the quantum numbers which label these subgroups. These 
are conserved ‘good’ quantum numbers for the system of N interacting distinguishable 
spinless particles whose motions are described by the model Hamiltonian (1.1) with 
V = 0. Thus the stationary states are completely specified by these quantum numbers 
and the state vectors are denoted by 

Inylm)=ln; YN,  YN-I , .  . . , y z ;  IN, L - I , .  . . , / I ;  mN, “ - 1 , .  . . m J ,  

where the quantum numbers y = {y2,  y 3 , .  . . , y N }  are defined as 

A, Ai-1 + I ,  +2yj, A =AN, 11 = A i ,  j = 2 ,  3, . I . , iV. (2.4) 

(2.3) 
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As we will show in 0 9, state vectors Inylm), or linear combinations of these state 
vectors, X ' v , l , m C v , L m l n y l m ) ,  can be used as zeroth-order state vectors for a new 
perturbation theory for more realistic N-body problems. 

For an application of this model to the system of N identical spin-$ fermions, the 
strong restrictions imposed by the Pauli principle have to be taken into account. In this 
case, for Pauli antisymmetry-adapted states, the quantum numbers y = 
{ y 2 , y 3 , .  . . , ? N I ,  1 = { l 1 ,  1 2 , .  . . , I N }  and m = { m l ,  m 2 , .  . , , " }  are no longer good. 
However, as we shall see in 0 6, the quantum numbers n and A still remain good. We 
shall also see that not all of the solutions of the Schrodinger equation with Hamiltonian 
(1.1) are allowed by the Pauli principle. In particular, from equation (2.1), the 
minimum value of E, is obtained when s = A = 0, but the states obtained in this way are 
not in general the antisymmetry-adapted states. 

It is important to know the physically acceptable states and their conserved 'good' 
quantum numbers for a system of N identical spin-$ fermions. These states are the ones 
which should be used as zeroth-order states for a perturbation theory to realistic 
problems. 

3. Description of the Hamiltonian by hyperspherical coordinates 

In this section, we rewrite our model Hamiltonian (1.1) in terms of hyperspherical 
coordinates. We will see that this is the natural coordinate system to describe the state 
vectors (2.3) in coordinate representation. 

In hyperspherical coordinates, we replace the 3N independent coordinates 
{x i ,  y i ,  zi 1 i = 1 ,2 , .  . . , N} by a sct of (3N - 1) hyperspherical angles and a hyper- 
spherical radius. Among the (3N - 1) hyperspherical angles, we can choose 2N angles 
to be the ordinary three-dimensional spherical polar angles {eiy cpi I i = 1,2 ,  . . . , N} of 
individual particles. By means of the ordinary spherical polar radii {ri I i = 1,2 ,  . , , , N}, 
the remaining (N - 1) hyperspherical angles are defined by the following set of 
equations: 

rN = r cos T N ,  

r N - l =  r sin T N  cos q N - 1 ,  

T N - ~  7 r sin 77N sin T N - I  COS 77N-2, 

r 2  = r sin q N  sin 7 7 N - 1  sin q N - 2 .  . . sin 773 cos 772, 

r l  = r sin 7 7 ~ ~  sin 77N-1 sin 7 7 N - 2 . .  . sin 773 sin 772. 

The angles T~ can also be expressed as 

sin2 Vi = R?-,/R;,  

where 
k 

i - 1  
R i  = r?. 

The hyperspherical radius r is defined by 

(3.4) 
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The volume element in the 3N-dimensional space described by the hyperspherical 
coordinates is 

13.5) d r  = r 3 N - 1  dr dR, 

where 
N N 

d R =  n (cos2 7, sin3’--4 vi dv,) n (sin 8, do, dq,)  
J = 2  r - 1  

Using these coordinates, the Hamiltonian (2.1) with V = 0 is written as 

1 8’ 3 N - 1  1 d A2(R) 
2 ar2 2 r ar 2 r 2  r 

H +--- 

(3.6) 

(3 .7)  

where A2(R) is defined by 

A2(R) =A;, 

a’ (3j-4) cos2 7, - 2  sin2 77, ii l i ; - l  ~f 
4 =--- -+.+f2 

‘2: = L1. 

$772 sin 7, cos 7, a77f sin 77, cos 77, 
’ I  

(3.8) 

In the above equations, L: is the square of the ordinary angular momentum operator 
for particle j :  

2 

2 i a  1 a’ 
sin 0, - -7 2. ( a:,) sin e, cfq, sin e, ae, 

L, = -- - 13.9) 

The operators .A2, hf and Lf are, in fact, Casimir invariants of 0 (3N) ,  O(3j) and 
’O(3) in the subgroup chain (2.2). Therefore, in order to represent the state vectors 
lnylm) in spactial coordinates, the hyperspherical coordinate system is the most natural 
one. 

4. The Schrodinger wavefunction 

We can separate the Schrodinger equation, ( H  -E)+ = 0, into a hyperangular part and 
a hyperradial part: 

A2(R)S(n) =&(a), (4.1 i 

d2 
(2- [ F  +2(3N-l)(N-- 14.2) 

where E is the separation constant and 

$ ( r )  = %(r) S(R). (4.3) 

The hyperangular part (4.1) is well known from the general theory of harmonic 
polynomials (Erdely et a1 1953, Grynberg and Koba 1964). There are two methods by 
which the eigenfunctions S(n) can be obtained. One is the direct solution of the 
differential equation in hyperspherical coordinates. The other method involves the 
construction of the linearly independent homogeneous polynomial solutions of 
Laplace’s equation in 3N dimensions. Both methods have their own advantages and 
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disadvantages. The former gives state vectors which are exactly eigenvectors of csco 
given by the set of Casimir invariants of the subgroup chain shown in (2.2). By this 
method, it is straightforward to write a wavefunction for any value of N. On the other 
hand, it is not easy to see the transformation properties of the wavefunctions under the 
operations of particle exchanges. It is necessary to know these properties in the 
construction of the antisymmetry-adapted wavefunctions. The other method, 
however, provides a convenient form of the wavefunction appropriate for the study of 
its transformation property. The former method is discussed in 9 4.1, the latter in 9 4.2. 
For 00 4.1 and 4.2, we will closely follow the discussion by Knirk (1974). The treatment 
of the hyperradial part (4.2) is straightforward and the function 9 ( r )  is explicitly given 
in 9 4.3. 

4.1. The direct solution of the hyperangular equation 

Since the operator A2(R) is defined recursively by equation (3.8), the hyperangular part 
can be solved by analysing the eigenvalue problems of operators A:(Rj), 

A:(nj)Sj(Q) = &jSj(nj). (4.4) 

Here Rj  implies the collection of variables Rj  = (772, q3, . . . , qj ;  61, 62, . . . , 6,; 
ql, q 2 ,  . . . , qj}. It is well known that the eigenvalue ej  can be written in the form 

(4.5) 

Because of the recursive form (3.8) of the operator A;(Rj), equation (4.4) separates into 
variables qj, R j - l ,  Oj and qj by setting 

e j  = A j ( A j  + 3j - 2), A j = O ,  1,2 , .  . . , 

(4.6) 

tj=1-2sinZqj, wj = ( 6 ,  q j } ,  (4.7) 

Y(lj, mj I w j )  is the usual three-dimensional spherical harmonic Y~i,mi(f?j, qj )  and yj is a 
quantum number associated with the eigenvalue ci. The function G in equation (4.6) is 
the solution of the ordinary differential equation 

d2 G d G  4(1- t : )  -- [6jtj + (6j - 12)] - 
dt:  d t j  

The physically acceptable function G is 

where P?”(t) is the Jacobi polynomial of order y. The eigenvalue 
form in equation (4.5) with 

is given by the 

(4.10) A j  = A j - l +  l j  + 2yj, y j = o ,  1,2 , .  * ., 
In equations (4.6) and (4.10), we have the identifications 

&(nd = y(I1, ml I w d ,  A 1  11. (4.11) 
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As we have shown in equations (2.4) and (2 .5) ,  we label our state with { y j }  rather than 
{Aj} .  It is now clear that the hyperangular wavefunction can be written as 

(4.12) s(r, I ,  m I W = W y ,  lIv)A(l, mi@),  

where 

H ( Y ,  i v )  = G(AN-I,  [N, Y N  11 - 2 sin ~ N ) G ( A N - z ,  iN-1 ,  Y N - 1  j 1 - 2 sin2 m-1) . . . 
x G ( h 2 , / 3 ,  7 3  I 1 - 2 sin2 vW(11, 12, YZ 1 1 - 2 sin2 mf 

2 

(4.13) 

and 

(4.14) 

In equation (4.12), q = {v,} and w = {q}. The function S is the simultaneous eigen- 
function of the operators A2=A&, A%-I, AN-* ,  . . . , A:, A: and L;, LL-1, . . . , L:, L: ,  
( L z ) ~ ,  & ) N - I , .  . . , (L,)2, (LZ)l .  These operators are in fact Casimir operators of the 
chain 0 ( 3 N ) ,  O(3N -3), O ( 3 N  - 6), . . . , 0 ( 9 ) ,  O(6) and N 0 ( 3 ) ,  N-’0(3), . . , , 2 0 ( 3 ) ,  
‘O(3) which appear in the subgroup chain (2.2). The function S further satisfies 

A2(n)S(y, 1, m 1 a) = A \A + 3N - 2 ) S ( r ,  1, m a), 1 4 . 1 5 ~ )  

h: ( f l , )S(y ,  1, m l R ) = A 1 ( A , + 3 j - 2 ) S ( r ,  1,mla). (4 .1shJ 

L ~ ( w , ) s ( Y ,  1, m ia) = L(l1 + ~ ) S ( Y ,  1, m la), ( 4 . 1 5 ~ )  

~L,) , (CP,)S(Y,  1, m la) = mrS(Y, 1, m la). (4.15d) 

2 

In equation ( 4 . 1 5 ~ 1 ,  

(4.16) 

4.2. The homogeneous polynomial solutions of Laplace’s equation in 3 N  dimensions 

It is possible to construct another equivalent set of solutions to equation (4.1) by 
considering Laplace’s equation in 3N dimensions. Let us define a function U(r )  by 

U ( r )  = r ” S A ( 0 , .  (4 .17)  

Operating the 3N-dimensional Laplacian on U ( r ) ,  we obtain 

= r”-’[h (A + 3 N  - 2)  - A2(a)]s~ (a). (4.18) 

Hence the relation 

~ i ~ ( f i ) s ~ ( a ) = h ( A  + ~ N - ~ ) S A ( R )  (4.19) 

is the necessary and sufficient condition for U ( r )  to be a solution of the 3N-dimensional 
Laplace equation 

(4.20) 
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From the previous discussion in 0 4.1 and equation (4.19), it is obvious that the function 
SA(0) is, in general, expressed by an arbitrary linear combination of the functions 
S(Y, 4 m In) as 

 SA(^)= C(A2,. . .   AN-^; [I, - / N ;  m i ,  ~ N ) S ( Y ,  I, m In). 
(4.21) 

We now try to find the homogeneous polynomial solutions of the Laplace equation 
(4.20). Once they are obtained, the functions &(a) are determined by (4.18). 

U(r )  = Q(P, I rl, . . . , rN)A(f, m I w )  

AzrA3 ,..., AN-, 11 ..... / N  ml , .  .., mN 

We first separate the harmonic polynomial U in ordinary spherical polar angles: 

(4.22) 

where Q(p, f 1 rl ,  . . . , rN) is a homogeneous polynomial of degree A in rl, rz, . . . , rN, and 
A(I, m I w )  is defined in equation (4.14). It is shown that the hyperharmonic polynomial 
Q takes the form 

(4.23) 

(4.24) 

Here a denotes a set of N non-negative integers a = (a1, az, . . . , a~}. Since A is the 
degree of homogeneity of the polynomial Q, from equations (4.24) and (4.16), it is 
evident that 

(4.25) 

Substituting equation (4.23) into equation (4.20), we obtain an equation which deter- 
mines the set of coefficients Cu(p, I),  

(4.26) 

Equating all the coefficients of linearly independent terms in equation (4.26) to zero, we 
can evaluate Ca. Generally equation (4.26) gives more than one possible set of 
coefficients Ca. The corresponding linearly independent polynomials Q can be labelled 
as 

(4.27) Q(P, I; i 1 rl, . . . , rN) 

where 
p + N - 2  

i = l , 2  ,..., no, n o = (  N - 2  )' 
We can now write a set of hyperspherical functions as 

s ( p , ~ , m ; i I n ) = r - ~ Q ( p ,  f ; i l r 1 ,  .. . , r N ) A ( f ,  m l w l , .  . . , O N ) .  (4.28) 

As indicated in equation (4.21), the function S(6, f, m ; i I n) is an eigenfunction of the 
operator A', but it is not an eigenfunction of operators A;, j = 1,2, . . . , N - 1. Since Q 
is a polynomial in the variables rl ,  r2, . . . , rN which are ordinary spherical polar radii of 
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individual particles, it allows us immediately to see the transformation properties of the 
wavefunction under the exchange of particles. Furthermore, using equation (3. l ) ,  we 
can express Q in terms of the hyperspherical coordinates. 

4.3. The hyperradial solution 

The hyperradial equation (4.2) can be solved in the usual manner (I) and the result is 

E,, = -12 /2n2,  ~t = S  + A  +$(3N- l ) ,  s = o , 1 , 2  ) . . . ,  (4.29) 

(4.30) % ( n ,  A l r )  = Nn,A e 

p = (251n)r. 

In the above equation, F ( a ,  A ; p )  is the confluent hypergeometric function and N,,,, is 
the normalisation constant. The normalisation of the wavefunction $ ( r )  = 
9 ( n ,  A Ir)S,,(fl) is 

--PI2 p F(-n + A  +&(3N- l) ,  2A + 3 N  - 1; p ) ,  

where dCl is given in equation (3.6). From this normalisation, Nn,A is calculated to be 

14.32) 
3 N [n+h+$(N- l ) ] !  

Nn‘h =[(?) (2n)[n - A  -;(3N-l)]![(2A +3N-2)!I2 

5. The total angular momentum representation 

The addition of the angular momentum operators of individual particles defines the 
total angular momentum operator L :  

L = L1+ L2 f . . . + L‘V. (5.1) 

Since the operators L2 and L, commute with the Hamiltonian, our state function can be 
constructed as an eigenfunction of these. This representation is necessary when we 
consider perturbation problems to realistic systems. We couple the angular momenta 
of individual particles as 

B ( f 1 , .  . . , 1N; L 2 , .  . * , LN-1; L, MLlU) 

= (LN-1, MN-1, IN, ” 1 Lh’--l, IN, L ,  ML) 
MN . l ,mw 

x 1 jL2, Mz ,  13,  m3 1 L z ,  13, L3, M3) 1 (11, m t ,  12, mz I 1 1 ,  12, L2, Mz) 

(5.2) 

where ( L J - l ,  MJPl, 11, m, lL,-l,  11, L,, M,) are Clebsch-Gordan coefficients. In this way 
we can realise the total angular momentum L by various possible ways indicated by the 
different sets of intermediate angular momenta (L2, L?. . . . , LN I}. For simplicity of 

M 2 , m ~  m 1 . m ~  

XA(I1,. . . , I N ;  m i , .  . . , n t ~  / U ) .  
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notation, we shall denote a set {L2, . . . , L N - I }  by a single index k. We denote the 
number of possible sets of intermediate angular momenta k by nL(l).  

The hyperangular functions in the total angular momentum representation are now 
written as 

(5.3a) SLyML(y, I ;  k In) = H ( y ,  I 1  v )B( l ;  k ;  L, ML I w )  

or 

SL*Mr-(/3,1; k , i l f l ) = r - A Q ( @ , l ; i l r l , .  . , r N ) B ( l ; k ; L , M L I w ) .  (5.36) 

6. Construction of the Pauli antisymmetry-adapted wavefunctions 

For a system of N identical fermions, the total wavefunction is restricted by the Pauli 
principle. If one starts from an independent particle model for an N-fermion system as 
orfe does customarily, the Pauli principle can easily be taken into account using the 
Slater determinants. However, it is not an easy problem for our model system, since the 
motions of particles are strongly coupled to one another. Here we can make use of the 
Kotani-Yamanouchi formalism (Kotani et a1 1963) which provides a systematic 
method of constructing the antisymmetry-adapted wavefunctions for a system of N 
identical spin-4 fermions. We will now discuss this formalism. 

-In the space of spin functions for a system of N spin-; fermions, we have 2N linearly 
independent spin functions, 

el(deZ(fl2). * * e N ( f l N ) ,  (6.1) 
where each of el, e 2 , .  . . , t?N can be either cy or P such that 

1 
= it;+ i)e(ai) ,  ( s i ) z c y ( v i )  = z a ( a i ) ,  (s i )zP(qi i )  = +(vi)- 

The monomial functions (6.1) are eigenfunctions of the total spin operator YZ with the 
eigenvalue M,. They are not, however, eigenfunctions of Y2, where 

9 = s l + s 2 + .  . + s N ,  

In order to construct eigenstates of Yz,  the monomial functions (6.1) can be coupled 
according to a genealogical scheme. The vector coupling formulae according to this 
scheme are written as follows: 

( 6 . 2 ~ )  

(6.2b) 
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where SI is always t ;  Sz can be either 1 or 0 etc. For simplicity of notation, we denote a 
set {S1, Sz, . . . , SN-l}  by a single index K .  The functions 0:". form a complete set of 
functions in spin space of N spin-$-fermions. Therefore, the total wavefunction with 
specified L, ML, S and M, can be expanded as 

wheref(S) is the number of different sets K which give the same total spin S. For the rest 
of this section, we will omit the indices L, ML, S and M, to simplify the notation. 

The functions 0, with specified S and M, provide a basis set for an f(S)-dimensional 
irreducible representation of the symmetric group S N .  Let the permutation of particle 
coordinates, both space and spin, be denoted by P. Then 

f ( S )  

Y ' =  1 
PO, = c @,,V,,,,(P). (6.4) 

The Pauli principle then requires that 

P9 = E p 9 ,  (6.5) 

is +l or -1 according to P even or odd. Combining equations (6.3), (6.4) and where 
(6.5), we find the transformation properties of the spatial functions 4, : 

where 

U ( P )  = EpVT(P). 
VT is the transpose matrix of V. The set of matrices { U(P)}  also gives an irreducible 
representation of the symmetric group SN.  

In order to construct the antisymmetric wavefunctions, we must thus find the 
Schrodinger wavefunctions satisfying equation (6.6). The hyperradial function is 
invariant under operations P ;  thus we want to find the hyperangular functions which 
have the special transformation properties shown in equation (6.6). The totality of 
hyperangular functions supplies a basis for an infinite-dimensional matrix represen- 
tation of SN. At this point, it is convenient to classify the hyperangular functions by four 
invariant labels. They are L, M,, T and p. L and ML are invariant under the 
permutations because 

[P, L2] = [P, I,] = 0. (6.7) 

The symbol T represents the ' I  structure' of the function. It is defined by 

T = { ( / " ) " a ( / b ) n b ( l C ) n c .  . .} (n,+nb+n,+. . . = N )  (6.8) 

where nu is the number of li with 1, = l", nb is the number of li with li = l h ,  and so on. For 
a given T, there are 

(6.9) 

distinct sets of li ordering [li ordering [Il, /z,. . . , lN] .  We will index each set with a 
single integer j .  The quantum number p is defined by equation (4.16): 

!6.10) 

n, = N!/n,!nb!n,! . . . 

p = ;(A - 6 )  = +[A - (n,!" + n b l b  + n,/' + . . .I] 
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Since [P, A*] = 0,  A is invariant. From the invariance of A and T, it is evident that P is 
also an invariant. As shown in equation (4.27), for a given P and fixed L, ML and T, 

there are 
P + N - 2  

N - 2  ) (6.11) 

linearly independent functions. We will index each one with a single integer i. Hence, 
the convenient labelling of the hyperangular function is given by 

s:ML(P, 7 lo), CL = {i, i, k). (6.12) 

In a subspace specified by L, ML, P and T, the subset of functions S:ML(P, ~1n) 
supplies a finite-dimensional reducible representation of S N  : 

(6.13) 

In the above expression and in the rest of this section, we omit the indices L, ML, P and 
7. The dimensionality of this representation is denoted by g(L, P, T )  and it can be 
calculated to be 

(6.14) 

If the representation { X ( P ) }  contains the irreducible representation { U(P)} ,  it is 
possible to take linear combinations of the functions S, to construct new functions SPK 
which provide a basis set for { U(P)} :  

dL, P, 7) = ndT)npn,. 

where 

(6.15) 

(6.16) 

Using this SP,, the spatial function (LK in equation (6.3) is written as 

( L K ( r >  = W(n ,  A I r)YK(n). (6.17) 

Combining equations (6.15), (6.16) and (6.13), we obtain a set of equations for C,,K: 

or, in matrix notation, 

X ( P ) C  = CCqP).  

(6.18a) 

(6.18b) 

Solving equation (6.18) for C, we can obtain SPK. However, in practice, it is more 
convenient to make use of projection operators to determine SPK. Equation (6.16) 
means that a basis function of an irreducible representation { U(P) }  designated by the 
total spin S is constructed by a linear combination of the independent functions S,: 

SP',"' = s,c:;. (6.16') 

Here the designation of the irreducible representation is made by the superscript (S). 
Equation (6.16') conversely tells us that an S, is expressed as a linear combination of 

w 
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the functions 9Ls) : 

(6.19) 

There is a projection operator 9Ls) which picks up a particular 9’p‘,“’ component from a 
function S ,  : 

16.20) is1 is) 
acsi,K.,YK = 9, s,. 

Such an operator 9;’) is given by (see e.g. Hamermesh 1962) 

16.21) 

For a given set of {L ,  p, T } ,  there are g(L,  p, T )  linearly independent functions S,. If the 
representation { X ( P ) }  contains the irreducible representation { U”’(P)}, Pis’s, are 
non-zero at least for one of S,. The function 9’:’’ is proportional to 9‘,’’S, and CEL can 
be written as 

where b:’ is the proportionality constant. The p* is a set of quantum numbers i, j ,  k for 
which P‘,s’S,* is non-zero. The correct set of the proportionality constants bjs’ can be 
easily determined by substituting equation (6.22) into equation (6.18). Therefore, 
knowing the transformation properties of S ,  in the form of equation (6.13), the use of 
equations (6.22) and (6.18) determines 9’is). Using these 9’k9), the correct antisym- 
metry-adapted wavefunctions are constructed by equations (6.3) and (6.17). 

7. Antisymmetry-adapted wavefunctions for N = 2 

In this section, we use the hyperangular functions of the form given in equation ( 5 . 3 ~  ) :  

SL’”L(Y, l I W = H ( y ,  1177)B(l;L,MLlW), (7.11 

where 

1 = [ I “ ,  PI ,  H ( y , l i ~ ) = G ( l U , l i ’ ,  y11-2sin’q).  (7.2) 

We now consider the function S:”. (p,  T 10). For N = 2, it is evident that nb = 1 and 
n=(r)  = 1. When the I-structure is given by T = { ( l a ) ’ } ,  n, = 1. However, €or T = 

with I“ # l b ,  n, = 2. Hence we have two different cases. The former gives a 
one-dimensional representation of the symmetric group Sz, and the latter gives a 
two-dimensional reducible representation: 

g(L, P, 7- = {(WI)  = 1, g(L,  p, T = 2. (7.3) 

We denote the permutation operators by 

1 2  1 2  
I-( 1 2 ’  ) P21-(2 17.4i 

t7.5) 
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and 

P21H(Y, [I", ~"1177) = ( - ) - W Y ,  [ I b ,  r"1lv). 

IsL*ML(y, [Z", rb]ln) =SLSML(y, [I", Zb]l.n), 
p21sL'ML(Y, [l", p](n) = (-)-la-'b-V+L s L*Mr (7, [Ib, n1.n). 

Therefore equation (6.13) can be written as 

For T = equations (6.22) and (7.7) give 

= $b's'f(s)[ u y I )  x 1 + u's)(P21)(-l)L-y] 

= r b  1 ' S )  f(S)[l +(-l)"-"s]. 
= ib'S'f(S)[l x 1 + (-l)s(-l)L-y] 

From equations (6.16') and (7.8), with proper normalisation, we obtain 

yL.M';(S' (p  = y ,  7={(1")2}/.n)=~[1+(-1)L-~+S]SL~ML(y,[la, l"]ln). 

For 7 = {(Iu)'(Zb)'} with I" # l b ,  Cl"' are written as 

CifJ,[b] = (~ )b 'S ' f (S ) [U'S ' ( I )  x 1 + u's'(p2,) x 01 = (g)b(s'(s), 

Ct~~',p1 = ib"'f(S)[ U'"(I) x 0 + U's'(P21) x (-l)-'a-'b-"+L 1 
= zb 1 IS' f(s)(-l)-'a-'b--''L'S 

After the proper normalisation, equations (6.16') and (7.10) give 

y L . M L ; ' S ' ( p  = y, 7 = { ( ~ " ) l ( ~ b ) l } l ~ )  
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(7.6) 

(7.7) 

(7.8) 

(7.9) 

(7.10) 

l--lb-y+L+S L,M' 
= (l/JT){sL*ML(y, [I", zb]ln)+(-)- s (7, [ I b ,  I"1ln). (7.11) 

Both equations (7.8) and (7.10) satisfy equation (6.18) andour results are correct. In 
fact, equations (7.9) and (7.11) are exactly the same as the expression given in Macek 
(1967). The total antisymmetry-adapted wavefunctions are now given by 

(n ,  p, 7 1 r, a) = a(n, A I r ) ~ " " ~ ~ - " ~ ' ( p ,  T I  i~)o~*xs(a).  (7.12) 

From equations (2.2), (4.16) and (7.9), the ground state of our model system is 
identified as 

q,L,ML;S,Ms 

~ L = o , M L = o ; s = o , M , = o  2 (n  =3, p = 0, 7 = {s } I  r, a). 

8. Antisymmetry-adapted wavefunctions for N = 3 

For N s 3 ,  if we use the functions (5.3a), it is rather tedious to investigate their 
transformation properties under the operations of permutations. But using functions in 
the form in equation (5.3b), we can easily see their transformation properties, and the 
construction of the antisymmetric wavefunctions is straightforward. However, it is 
difficult to obtain a closed expression which can describe all the possible antisymmetric 
states. We therefore present a class of antisymmetric wavefunctions which consists of 
all the ground states, all the first excited states and the states obtained by the hyperradial 
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excitations of these. The construction procedure given in 9 6 will be followed. The 
results are given below. 

\V(L = I ,  M ~ ;  s = f, M,: n,  p = 0, T = {s p > /  r, a) 2 

= const %(n,  A = 1 1 r){-&[sin 773 cos 772 ~ ( 1 ,  ML I u2) 

-sin773sin772~(1,MLIw1)]O(S=&,Ms;~2=1/a) 

+[2 cos q3Y(1, ML/w3)-sin 773 cos 772Y(1, MLIw2) 

-sin 773sin r / 2 ~ ( 1 , ~ L / w 1 ) ] ~ ( ~ = f , ~ , ; ~ 2 = ~ j a ) } ,  (8.1) 

where n = 5, 6, 7, 8 , .  . . , 
\V(L =o,  M~ = 0 ;  s =&, M,: n, p = 1, T = {s )Ir, a) 3 

= constant 3 ( n ,  A = 2 I r ) [ -& sin2 v3(1 - 2 sin2 7 7 2 ) 0 ( ~  = 4, M, ; ~2 = 1 j a) 

+ ( 2  - 3 sin2 7 7 3 ) 0 ( ~  = $, M, ; ~2 = o 1 a)], (8.2) 

where n = 6 , 7 ,  8, .  . . , 
V ( L  = 1, M ~ ;  s = 1, M, : n, p = 0, T = {sp I 1 r, a) 2 

= constant %(n,  A = 2 / r)[sin v3 cos 772 cos v39(1, 1; 1, ML 1 ~ 2 ,  co3) 

-sin q3 sin 772 cos 773%(1,1; 1, M L / w l r  w3) 

+sin2773sinv2cos772%(1, I ;  ~ , M L ~ W ~ , W ~ ) I O ( S = ~ , M ~ ~ ~ ) ,  (8.3) 

where n = 6, 7, 8, . . . , 
\V(L = o or 2, M,; s =$, M,:  n, p =o,  T = {sp } / r ,  a) 2 

= constant 9 (n,  A = 2 I r){J?[sin q3 cos 772 cos v39 

(8.4) 

(8.5) 
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where n =6,7, 8,. . . , 
T(L = 2, ML; S = 1, Ms: n, 2 = 0, T = {s d } ( r ,  a) 

= constant x B(n,  A = 2 I r){-J5[sin2 773 cos2 772 ~ ( 2 ,  ML Iwz) 

- sinZ q3 sin2 772 Y (2,  M~ I W ~ ) ] O ( S  = 3, M, ; SZ = 1 I a) 
x [2  cos2 q3 ~ ( 2 ,  M~ 1 w 3 )  -sin2 773 cos2 772 Y (2,  ML I 02)  

-sin2 7 7 3 s i n 2 7 7 2 ~ ( 2 , ~ L I ~ 1 ) ] ~ ( ~ = ~ , ~ s ;  ~ 2 = 0 l a ) } .  (8.6) 
where n = 6 , 7 , 8 , .  . . . 
In equations (8.1)-(8.6), O(S, Ms: SZ I a) are the spin functions which satisfy 

Sp2@(S, M,; s2 I a) = S ( S  + l )@(S,  M,; sz I a), (8.7) 

where 

Spz=s1+sz, s P = Y Z + s 3 .  (8.10) 

and si are one-particle spin operators. Explicit expressions of 0 are given in equation 
(6.2). The functions 9 are defined as 

WZl, I,; L, ML 1 0 1 1  0 2 )  

=C Y(h ,  mllwl>~(Z2,ML-mllw2)(Zl, ml, LML-m1111,12, L , W .  
mt 

(8.11) 

We list all the possible antisymmetry-adapted ground and first excited states in 
table 1. 

Table 1. 

7 ) S A f l Z r  L S Term Equation 

( 4 0  0 0 0 s3 0) No antisymmetry adapted state is allowed 

5 0 1 0 1 S2p 1 4 'p (8.1) Ground states 

6 0  2 1 0  S3 0 f 'S (8.2) 1st excitedstates 
6 0 2 0 2 Sp2 1 $ 4P (8.3) 
6 0  2 0 2 0 4 'S (8.4) 
6 0  2 0 2 1 4 'P (8.5) 
6 0  2 0 2  2 4 'D (8.4) 
6 0 2 0 2 SZd 2 4 'D (8.6) 
6 1  1 0  1 S2d 1 1 'P (8.1) 

9. Applications and concluding remarks 

As we mentioned in 0 1 ,  our exactly soluble model systems provide a new starting point 
for a perturbation theory to realistic systems. This idea was considered by White and 
Stillinger (1970) for the ground state of two-electron atoms (N = 2) .  They took the 
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exactly soluble model system described by the Hamiltonian (1.1) as the unperturbed 
starting point. The parameter in the unperturbed Hamiltonian (1.1) was obtained by 
averaging the actual electron-electron and electron-nucleus potentials over all the 
3N - 1 = 5 hyperspherical angles in the configuration space. In spite of the crudeness of 
the zeroth-order model, they obtained a reasonable value for the energy expectation 
value by the second-order correction. There is another method to determine the value 
of the parameter 5 for the zeroth-order model. 

For a system defined by 

~ = + ( p : + .  . . + p $ ) + ~ ( r ~ ,  . . . , rhr), 

H = mi) + H", 

~ " ( 5 )  = $ ( p : + .  . . + p $ )  - l / ( r :  +. . . + rLr)' 

(9.1) 

we separate the Hamiltonian into two parts: 

19.2) 

where 

19.3) 

and 

U ( r l , .  . . , r N ) - [ - l / t r : + .  . . + r i r ) 1 ' 2 ~ .  (9.3,  

The eigenvalue problem 

( H  - E)W = 0 (9.51 

is approached by perturbation expansions of the eigenfunctions and eigenvalues: 

WO = 4°K) + trLl(i) +. 
E ( [ )  = Eo(l)  + @i(O + 5*&(1) + . 

. I 

An appropriate value of (= can be determined by the variational requirement 

(9.61 

where 

The ['+bi(l) is the lowest-order correction to the GO([). 
In any case, it is essential to know the physically acceptable zeroth-order states 

which satisfy the Pauli principle. The zeroth-order states cannot always give good 
approximations to realistic systems; however, this kind of approach has certain advan- 
tages. The zeroth-order states here correspond (contrary to the usual practice) to 
strongly coupled particle states. The global quantum numbers of the model system can 
provide a useful classification of the states of a quantum system with strong particle 
correlations. In fact the study of two-electron atoms based on the idea of Fano (1976), 
Macek (1968) and Lin (1974) (Klar and Klar 1980; for three-electron systems, see 
Clark and Greene (1980)) showed that the quantum numbers related to the model 
system are very useful for the classification of the doubly excited states of He. Our 
model system may also give some useful insight into the periodicity of atoms (periodic 
table). With the independent particle model, one cannot explain the Aufbau principle 
whose characteristic is due to a symmetry breaking by particle interactions. It is 
interesting to study the Aufbau scheme from another end, starting from an exactly 
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soluble interacting model like the one shown in this paper. This problem is now under 
investigation. 

In summary, we have discussed a class of exactly soluble quantum systems of N 
interacting identical spin-$-fermions. The classification of the state vectors is based on 
the dynamical group O(3N + 1,2) and its subgroups. The Casimir operators of the 
subgroups are expressed in terms of hyperspherical coordinates, and the group 
theoretical interpretation of the corresponding quantum numbers is exhibited. We 
have presented a systematic procedure of constructing the Pauli antisymmetry-adapted 
wavefunctions. This procedure works in principle for the system of any number of 
spin-$-fermions. The resulting antisymmetric states ax L: labelled by conserved good 
quantum numbers. For N = 2 and 3 ,  these antisymmetric wavefunctions are explicitly 
constructed. For N = 2, the ground state of our model system is designated by 'S(s2) 
(analogous to the ground state of atomic helium or deuteron, in the nuclear physics 
context). For N = 3 ,  however, the ground state of our model system is labelled by 
P(s2p). The ground state of atomic lithium is *S(s3). For our model system, the state 
S(s3) appears in its first excited level ( n  = 6). No state with n = 4 is allowed by the Pauli 

exclusion principle. Note however, that the quantum numbers in the model and in 
atomic physics notation do not have exactly the same meaning, but one can establish a 
correspondence. 

2 
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